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Abstract—The iterative decoding threshold of low-density
parity-check (LDPC) codes over the binary erasure channel
(BEC) fulfills an upper bound depending only on the variable
and check nodes with minimum distance �. This bound is a
consequence of the stability condition, and is here referred to as
stability bound. In this paper, a stability bound over the BEC is
developed for doubly-generalized LDPC codes, where variable
and check nodes can be generic linear block codes, assuming
maximum a posteriori erasure correction at each node. It is proved
that also in this generalized context the bound depends only on
the variable and check component codes with minimum distance
�. A condition is also developed, namely, the derivative matching
condition, under which the bound is achieved with equality. The
stability bound leads to consider single parity-check codes used
as variable nodes as an appealing option to overcome common
problems created by generalized check nodes.

Index Terms—Binary erasure channel (BEC), error-correcting
codes, extrinsic information transfer (EXIT) chart, information
function, low-density parity-check (LDPC) codes, stability condi-
tion.

I. INTRODUCTION

L OW-density parity-check (LDPC) codes [1] have been in-
tensively studied in the last decade due to their capability

to approach the Shannon limit under iterative belief-propaga-
tion decoding. An LDPC code of length and dimension
can be graphically represented as a bipartite graph, known also
as Tanner graph, with variable nodes (VNs) and
check nodes (CNs) [2]. The degree of either a VN or CN is de-
fined as the number of edges connected to it. A degree- VN of
an LDPC code can be interpreted as a length- repetition code,
i.e., as an linear block code repeating times its single
information bit towards the CN set. A degree- CN of an LDPC
code can be interpreted as a length- single parity-check (SPC)
code, i.e., as a linear block code associated with one
parity equation.

Manuscript received February 06, 2008; revised August 25, 2008. Current
version published February 25, 2009. This work was supported in part by the
European Community under Seventh Framework Program grant agreement ICT
OPTIMIX n.INFSO-ICT-214625. The material in this paper was presented in
part at the IEEE International Symposium on Information Theory (ISIT), Nice,
France, June 2007.

E. Paolini and M. Chiani are with DEIS/WiLAB, University of Bologna,
47023 Cesena (FC), Italy (e-mail: e.paolini@unibo.it; marco.chiani@unibo.it).

M. P. C. Fossorier is with ETIS ENSEA/UCP/CNRS UMR-80516, Cergy,
Pontoise, France (e-mail: mfossorier@ieee.org).

Communicated by I. Sason, Associate Editor for Coding Theory.
Color versions of Figures 6 and 7 in this paper are available online at http://

ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2008.2011446

An extension of the concept of LDPC code is represented
by doubly-generalized LDPC (D-GLDPC) codes [3], where the
VNs and the CNs are allowed to be generic linear block
codes instead of repetition and SPC codes, respectively. If only
the CN set is generalized while all the VN are repetition codes,
then the code is called a generalized LDPC (GLDPC) code [2].

In a D-GLDPC code, the codes used as VNs and CNs are
called component codes. In this work, each component code is
assumed to be a linear block code having a minimum distance

. The VNs and the CNs that are not repetition or SPC
codes, respectively, are referred to as generalized nodes. The
corresponding code structure is depicted in Fig. 1. An
generalized VN is characterized by connections towards the
CN set; moreover, of the D-GLDPC encoded bits are as-
sociated with it, and interpreted as its information bits. A
repetition VN is a particular case with . An gen-
eralized CN is characterized by connections towards the VN
set, and represents independent parity-check equations
of the D-GLDPC code. An SPC CN is a particular case with

.
Given a sequence of bits, the generic VN encodes

a subset of such bits to generate bits, each one associated
with a specific bipartite graph edge connected to some CN. The
sequence of bits is a codeword for the D-GLDPC code if and
only if the produced bits at each CN are a valid codeword for
that CN.

In his pioneering work [2], Tanner introduced GLDPC codes
with a uniform CN set composed of identical CNs, and a uni-
form VN set composed of repetition codes, all with the same
length. Such GLDPC codes are also known as Tanner codes.
In [2], encoding and decoding algorithms were proposed and
lower bounds on the overall GLDPC code minimum distance
were developed. These bounds involve the variable component
codes length, the check component codes minimum distance,
and the bipartite graph girth.

GLDPC codes with uniform CN set have been investigated,
for example, in [4]–[8]. In [4], the growth rate of the weight
distribution is calculated for Tanner codes with Bose–Chaud-
huri–Hocquenghem (BCH) check component codes and
length- repetition VNs, leading to an asymptotic lower bound
on the minimum distance. The same lower bound is developed
in [5] assuming Hamming check component codes and again
length- repetition VNs. Both works extend the approach
developed by Gallager in [1, Ch. 2], showing that for large
enough , we can expect good minimum distance properties
for randomly generated Tanner codes with uniform VN set and
uniform CN set, where the CN set is composed of linear block
codes with minimum distance . More specifically,
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Fig. 1. Structure of a D-GLDPC code.

for large enough , the minimum distance is a linear function
of .

The growth rate of the number of small-weight codewords
for GLDPC codes with uniform CN set and an irregular VN set,
composed of repetition codes with different lengths, has been
investigated in [6]. It is shown that for large enough , a min-
imum distance increasing linearly with is expected when ei-
ther the uniform CN set is composed of linear block codes with

, or the minimum length of the repetition VNs is .
On the other hand, if the CN minimum distance and the min-
imum length of the repetition VNs are both equal to , then for
a randomly selected GLDPC code in the ensemble, we expect a
minimum distance growing as a linear or sublinear function of

(for large ), depending on the sign of the first-order coeffi-
cient in the Taylor series of the growth rate.

In [7], capacity-approaching GLDPC codes with irregular
VN set and uniform CN set, where the CNs are represented
by Hadamard constraints, were designed for the additive white
Gaussian noise (AWGN) channel. This construction is shown
to be effective in the low-rate regime. Generalized LDPC codes
with uniform VN set composed of length- repetition VNs and
uniform CN set composed of BCH or Reed–Solomon codes,
over both the binary erasure channel (BEC) and the binary
symmetric channel (BSC), are considered in [8], assuming
bounded distance decoding at the CNs. A threshold analysis
over the BEC based on density evolution is developed, together
with finite-length analysis based on the concept of generalized
stopping set. Furthermore, the analysis over the BEC is ex-
ploited to obtain tight bounds on the code performance over the
BSC.

Instances of GLDPC codes characterized by a hybrid CN
set, composed of a mixture of linear block codes of different
types, are investigated in [9]–[11]. The family of GLDPC codes
studied in [9] (and there called hybrid codes) is characterized
by a uniform VN set with length- repetition VNs and a hybrid
CN set composed of a mixture of Hamming and SPC CNs. Ac-
cording to this construction, each VN is connected to one Ham-
ming CN and to one SPC CN. The effectiveness of this code
construction over the Gilbert–Elliott channel is demonstrated.
Moreover, the growth rate of the number of small-weight code-
words is investigated, showing that the overall minimum dis-
tance is expected to grow linearly with the codeword length .

Generalized LDPC codes for the AWGN channel are de-
signed in [10]. Their CN set is composed of a mixture of SPC

and Hamming codes, and a quasi-cyclic structure guaranteeing
efficient encoding is used. The work [11] extends [6] in that
it evaluates the growth rate of the number of small-weight
codewords for GLDPC codes with an irregular VN set and
a hybrid CN set. It is shown that a GLDPC code minimum
distance growing linearly with is expected when either the
smallest CN minimum distance is or the minimum length of
the repetition VN is . Moreover, if the minimum repetition
VN length and the smallest CN minimum distance are both

, then the expected behavior of the GLDPC code minimum
distance (i.e., linear or sublinear with ) only depends on those
check and variable component codes in the Tanner graph with

.
The class of D-GLDPC codes was introduced in [3], where

the iterative decoding algorithm for such codes over the AWGN
channel is described (for a description of the iterative decoder
over the BEC we refer to [12]). Further works concerning
D-GLDPC codes are [13]–[15]. In [13], extrinsic information
transfer (EXIT) chart analysis [16] for D-GLDPC codes over
the AWGN channel is introduced. In [14], a technique based
on EXIT chart for threshold analysis of D-GLDPC codes (and
GLDPC codes as a particular case) over the BEC is proposed,
assuming that each check and variable component code is a
random linear block code with minimum distance at least . In
[15], EXIT chart analysis for the AWGN channel is exploited
to construct finite-length D-GLDPC codes whose performance
is compared with the performance of LDPC and GLDPC
counterparts over the AWGN channel, under a common set of
constraints. The simulation results show how the D-GLDPC
code is capable of outperforming the LDPC and GLDPC
counterparts in both the waterfall and error floor regions.

This paper investigates the stability bound of D-GLDPC
codes transmitted over the BEC. The stability bound is an upper
bound on the iterative decoding threshold, well known in the
context of LDPC codes [17]–[19]. Within the framework of
LDPC codes, this bound is of great importance as the reciprocal
of the parameter upper bounding the threshold plays a key role
in terms of expected minimum distance behavior, encoding
complexity, and capability of the ensemble to approach the
Shannon capacity [20]. We show that for D-GLDPC codes
only the variable and check component codes with minimum
distance , including length- repetition VNs and SPC
CNs, contribute to the stability bound and that the bound de-
pends on the generator matrix chosen to represent the VNs with
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minimum distance . Moreover, we show that for D-GLDPC
codes achieving the bound with equality, the asymptotic
threshold over the BEC can be expressed by a simple, although
in general not closed-form, formula. D-GLDPC exploiting SPC
VNs are also considered, with the purpose of highlighting their
potential capability to overcome common problems affecting
GLDPC codes, in particular rate reduction.

The paper is organized as follows. Some preliminary material
is presented in Section II. More precisely, some definitions and
notations are first introduced. Then the stability bound of LDPC
codes over the BEC is reviewed. The concepts of EXIT func-
tions of D-GLDPC codes EXIT charts, and of linear block codes
information functions and split information functions are also
introduced in this section. Furthermore, the expressions of the
EXIT functions for the VN set and CN set of D-GLDPC codes
are presented and the approach to obtain the stability bound over
the BEC for D-GLDPC codes is described. The stability bound
of D-GLDPC codes over the BEC is presented and discussed
in Section III, while in Section IV, a particular case is studied,
namely, D-GLDPC codes with SPC variable component codes.
Concluding remarks are given in Section V.

II. PRELIMINARIES

A. Definitions and Notations

We denote by and the sets of VN and CN types, re-
spectively. Each VN type and each CN type is identified with an
index. We denote by and the sets of indices for the VN
and CN types, respectively. We let be the subset of cor-
responding to the repetition VNs and be the subset of cor-
responding to the generalized VNs, such that .
Analogously, we let be the subset of corresponding to the
SPC CNs and be the subset of corresponding to the gen-
eralized CNs, such that . We also denote by
and the subsets of and corresponding to the VN and
CN types with minimum distance , respectively. Similarly, we
denote by and the subsets and corresponding
to the generalized VN and CN types with minimum distance ,
respectively.

For each and for each , we let and be the
length and the dimension of each type- component code, and

be its code rate. For each , we denote by
the number of Hamming weight codewords of a type- CN.
For each , we denote by the number of Hamming
weight codewords generated by Hamming weight informa-
tion words of a type- VN. We define the VN set and CN set
degree distributions from an edge perspective as

(1)

and

(2)

respectively, where and are the fractions of edges con-
nected to the VNs and CNs of type , respectively. We use the
convention that for the repetition VN types in the right-hand
side (RHS) of (1), any index is equal to the length of

the corresponding repetition VNs. Similarly, we assume that for
the SPC CN types in the RHS of (2), any index is equal
to the length of the corresponding SPC CNs. This assumption
allows to write with

(3)

Similarly, we write with

(4)

Letting and be the number of VNs and CNs, respec-
tively, and letting and
the number of type- VNs and the number of type-
CNs are given by and

respectively. Moreover, the D-GLDPC codeword length and
number of (not necessarily independent) parity-check equations
are given by

and

respectively, so that the overall design code rate is

(5)

B. Stability Bound of LDPC Codes Over the BEC

For LDPC code ensembles an important role is played by a
theorem known as the stability condition, representing a nec-
essary condition for successful decoding. The stability condi-
tion can be formulated for LDPC ensembles transmitted over
a generic memoryless binary-input output-symmetric (MBIOS)
channel, and its most important consequence is the possibility to
bound the asymptotic iterative decoding threshold. If the com-
munication channel is a BEC with erasure probability , we have
the following result [17]–[19].

Theorem 1 (Stability Bound of LDPC Codes Over the BEC):
The asymptotic iterative decoding threshold of an LDPC en-
semble over the BEC fulfills

(6)

The inequality (6) is referred to as stability bound in this
paper. (It is sometimes referred to as the stability condition.
For more details we refer to [19, Theorem 3.66] and the related
discussion.) In (6), is the fraction of edges con-
nected to the length- repetition VNs, while is the deriva-
tive (computed at ) of the LDPC CN degree distribution

, where is the fraction of edges con-
nected to SPC CNs of length . The bound (6) was first devel-
oped from density evolution.
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Fig. 2. Block diagram that can be used as a model for either a VN or a CN in the context of D-GLDPC code belief-propagation decoding.

C. EXIT Functions and EXIT Charts for D-GLDPC Codes

In this subsection, the threshold analysis of D-GLDPC codes
over the BEC through EXIT chart is introduced. We use here
upper-case letters to refer to random variables and lower-case
letters for their realizations.

The EXIT chart approach for D-GLDPC codes can be con-
veniently introduced looking at the communication model de-
picted in Fig. 2, which is a particular case of [21, Fig. 3]. A

-bit word (where the ’s are independent
and identically distributed (i.i.d.) Bernoulli random variables
with equiprobable values) is transmitted over a communication
channel resulting in the word or, equiva-
lently, in the vector of log-likelihood ratios ,
where

In parallel, the word is encoded by an linear block
encoder with no idle bits, producing the -bit codeword

(thus, each is a Bernoulli random variable
with equiprobable values). This codeword is then transmitted
over an extrinsic channel resulting in the received word

or, equivalently, in the vector of log-likeli-
hood ratios , where

An a posteriori probability (APP) decoder processes the output
of both the communication and the extrinsic channels to produce
the a posteriori log-likelihood ratios and
the extrinsic log-likelihood ratios . We
have

and

where the notation is used to denote a vector except its th
element.

Note that this communication model can be effectively ap-
plied to a VN (either repetition or generalized) in the context of
D-GLDPC codes iterative decoding. Here, the communication
channel of Fig. 2 is the communication channel over which the
whole D-GLDPC code is transmitted. In fact, as explained in
Section I, any VN interprets its associated D-GLDPC encoded
bits as its local information bits. The encoded bits of an
VN are checked by the CN set. At each iteration of a log-do-
main belief-propagation decoder, the VN receives messages,

one along each edge, and interprets the th message as the a
priori log-likelihood ratio for its th encoded bit, namely, .
Therefore, the extrinsic channel of Fig. 2 models the channel
over which the messages coming from the CN set are received
by the VN during each decoding iteration. Assuming that the
communication channel of Fig. 2 is the useless channel, i.e., re-
moving the upper branch in the block diagram, Fig. 2 can be also
used as a model for a CN, either SPC or generalized. In fact, no
communication channel is present in this case. From a CN per-
spective, the extrinsic channel of Fig. 2 models the channel over
which the messages coming from the VN set are received by the
CN during each decoding iteration.

For either a VN or a CN, the average a priori information
is defined as the average mutual information between each en-
coded bit and the corresponding a priori log-likelihood ratio in-
coming from the extrinsic channel at the generic iteration of the
iterative decoding process, namely

(7)

Similarly, for either a VN or a CN, the average extrinsic infor-
mation is defined as the average mutual information between
each encoded bit and the corresponding outcoming extrinsic
log-likelihood ratio at the generic iteration of the iterative de-
coding process, namely

(8)

Exploiting [21, Proposition 1], for a VN we have
for , which allows to be expressed

as a function of and of the communication channel param-
eters. Similarly, for a CN we have for

, which allows to be expressed as a function of
. Assume the communication channel is parameterized by a

real-valued parameter , such that if then the channel
with parameter is a degraded version of the channel with pa-
rameter . We have the following definitions.

Definition 1: The EXIT function of a VN expresses the av-
erage extrinsic information (8) of the VN as a function of its
average a priori information (7) and of the communications
channel parameters, i.e.,

(9)

Definition 2: The EXIT function of a CN expresses the av-
erage extrinsic information (8) of the CN as a function of its
average a priori information (7), i.e.,

(10)
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All the VNs of the same type have the same EXIT func-
tion. Considering this fact and regarding the overall VN set
as a unique VN composed of a mixture of codes, it is readily
shown that the EXIT function of the overall VN set is given by
the weighted summation of the EXIT functions associated
with the VN types, the weights being the coefficients of
defined in (1). Taking the same approach, the EXIT function of
the overall CN set is shown to be given by the weighted summa-
tion of the EXIT functions associated with the CN types,
the weights being the coefficients of defined in (2) (an ex-
ample is provided in [21, Section III-C]).

Definition 3: The EXIT chart of a D-GLDPC code is a plot
of the VN set EXIT function and of the inverse CN set EXIT
function as functions of .

At each iteration of the iterative decoder, the average extrinsic
information coming out from the VN set is equal to the CN
set a priori average information, and vice versa. In the limit
where the codeword length tends to infinity, the iterative de-
coding process can be graphically represented as zig-zag pat-
tern (sometimes referred to as the “decoding trajectory”) be-
tween the VN set EXIT function and the inverse CN set EXIT
function. Let us denote by and by the
VN set EXIT function and the CN set EXIT function, respec-
tively. A necessary and sufficient condition for a successful de-
coding taking place over a channel with parameter is the
presence of a decoding tunnel in the EXIT chart, meaning that

, where de-
notes the inverse CN set EXIT function. The value cor-
responding to the first occurrence of a tangency point between

and is the iterative decoding threshold
as evaluated by EXIT chart analysis.

D. Information Functions and Split Information Functions

If the communication channel is a BEC, then the EXIT func-
tion of a VN is closely related to code parameters known as (un-
normalized) split information functions [21], while the EXIT
function of a CN is closely related to code parameters known as
(un-normalized) information functions [22]. These parameters
are defined next. The given definitions are equivalent to those
provided in [21, p. 2663] and [22, p. 549], respectively.

Definition 4: Let be a generator matrix for an linear
block code and be the identity matrix. The th
un-normalized split information function of under the repre-
sentation , denoted by , is defined as the summation of
the ranks over all the possible submatrices obtained selecting

columns (with ) out of and columns (with
) out of .

Definition 5: Let be a generator matrix for an linear
block code . The th un-normalized information function of

, denoted by , is defined as the summation of the ranks over
all the possible submatrices obtained selecting columns (with

) out of .
The information function of a linear block code is indepen-

dent of the code representation. This follows from the fact that
any generator matrix of a linear block code can be obtained from
any other generator matrix through row summations only. These

row summations cannot modify the rank of any submatrix com-
posed of a subset of columns. On the other hand, the split in-
formation functions of a linear block code depend on its chosen
generator matrix representation, due to the concatenation of
with [14]. In this case, row summations performed on but
not on lead to different ranks for the submatrices composed
of a subset of columns and a subset of columns. Repetition
VNs make a trivial exception to the rule, as they admit one code
representation only.

E. EXIT Functions for D-GLDPC Codes Over the BEC

Let us assume as transmission channel a BEC with erasure
probability . For a bipartite graph with random connections, the
extrinsic channel, that is, the channel over which the messages
are exchanged between the VN set and the CN set during the
iterative decoding process, is modeled as a second BEC with
erasure probability depending on the decoding iteration [21].
By applying the definition of given in (7), it is readily shown
that in this case we have for both a VN and a CN.
Hereafter, the EXIT function of a VN is expressed as a function
of and , and the EXIT function of a CN as a function of .
To obtain the EXIT functions as functions of (and for the
VNs), just replace with .

The EXIT function of an VN over the BEC can be
readily obtained by applying [21, Theorem 2] to the context of
D-GLDPC codes.

Lemma 1: The EXIT function of an VN over the BEC,
when maximum a posteriori (MAP) erasure correction is per-
formed at the VN, is given by

(11)
where

(12)

It is readily shown that (11) leads to

(13)

for an repetition VN [21, Example 4].

The EXIT function of an CN over the BEC can be
obtained by letting in (11) (absence of communication
channel [21, Example 15]).

Lemma 2: The EXIT function of an CN over the BEC,
when MAP decoding is performed at the CN, is given by

(14)

where

For an SPC CN, (14) yields [21, Example 5]

(15)
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Under the hypothesis of a random bipartite graph, VN set and
CN set EXIT functions can be expressed as weighted summa-
tions of the VN and CN type EXIT functions, namely

(16)

and

(17)

where and are the EXIT functions for the th
VN type and for the th CN type, respectively, and and are
the fractions of edges towards the VNs of type and the CNs of
type , respectively.

For the sake of clarity, it is useful to isolate the contribution
of the repetition component codes in (16) and the contribution
of the SPC component codes in (17). We have

(18)

(19)

To obtain (18) we make use of (13) and (3). Similarly, to obtain
(19) we make use of (15) and (4).

We recall that the split information function of a generalized
VN, and therefore its EXIT function (11), depends on the chosen
generator matrix representation. Hence, the performance of the
overall D-GLDPC code depends on the code representation of
its variable component codes. For this reason, two generalized
VNs associated with the same code, but with different generator
matrices (i.e., different mappings between information words
and codewords) must be regarded as VNs of different types in
(16). On the other hand, since the information function of each
CN is independent of the specific code representation, different
check component code representations are associated with the
same EXIT function for the generalized CNs. The performance
of a GLDPC or D-GLDPC code is then independent of the spe-
cific representation of its generalized check component codes.

F. Stability Bound Over the BEC From Exit Chart Analysis
and Derivative Matching Condition

Next we propose a simple graphical interpretation of the sta-
bility bound (6) of LDPC codes over the BEC, using an EXIT
chart.

Proposition 1 (Second Form of the Stability Bound of LDPC
Codes Over the BEC): The stability bound of LDPC codes over
the BEC is equivalent to the following condition for

(20)

Proof: For LDPC codes, (6) implies (20) and vice versa.

The approach followed in this paper to obtain a generalization
of the stability bound for D-GLDPC codes over the BEC con-
sists of developing (20) using the general expressions of the VN
set and CN set EXIT functions (16) and (17) together with the
expressions of the EXIT functions for a specific VN or a specific
CN reviewed in (11) and (14), respectively. When extending the
approach to D-GLDPC codes, it is necessary to take care of the
value assumed by the VN set and inverse CN set EXIT functions
at (equivalently, at ). For binary LDPC code en-
sembles characterized by VNs and CNs with degree at least ,
for we always have and .
As discussed in [14], this holds also for binary D-GLDPC codes
with all variable and check component codes having a minimum
distance , which is an assumption of this paper.

There exist LDPC degree distributions achieving the stability
bound (6) with equality, so that their threshold over the BEC as-
sumes the simple closed form (for LDPC
codes this is referred to as the flatness condition [23]). For such
LDPC distributions, the first occurrence of a tangency point be-
tween the VN set EXIT function and the inverse
CN set EXIT function appears at (equivalently,

), i.e.,

(21)

Achieving (20) with equality is also possible for D-GLDPC
code ensembles. This condition is referred to as the derivative
matching condition in the sequel.

III. STABILITY BOUND OF D-GLDPC CODES OVER THE BEC

A. Main Result

In this section, the stability bound for D-GLDPC code ensem-
bles transmitted over the BEC is claimed and discussed.

Theorem 2 (Stability Bound of D-GLDPC Codes Over the
BEC): Let us consider a D-GLDPC code ensemble with a
nonzero fraction of VNs with minimum distance and a
nonzero fraction of CNs with minimum distance . Let
and be the set of indices for the minimum distance
VN and CN types, respectively. Let and denote the
number of Hamming weight– codewords for a CN of type

and the number of Hamming weight– codewords
generated by a Hamming weight information word for a
VN of type , respectively. For a type- VN or CN
let be the VN or CN length. For a type- VN, let be the
VN dimension. Furthermore, let and denote the fraction
of edges connected to the type- VNs and to the type- CNs,
respectively. Define

(22)

where, for each

(23)
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Furthermore, define

(24)

where, for each

(25)

Then, the asymptotic iterative decoding threshold of the
D-GLDPC code ensemble over the BEC, assuming MAP
erasure correction at each component code, fulfills

(26)

where is the inverse function of .
Proof: See Appendix I.

As pointed out in Section I, GLDPC codes represent a partic-
ular case of D-GLDPC codes in that all the VNs are repetition
codes. For this particular case, Theorem 2 is specialized as fol-
lows.

Corollary 1 (Stability Bound of GLDPC Codes Over the
BEC): The asymptotic iterative decoding threshold of a
GLDPC code ensemble over the BEC, assuming MAP erasure
correction at each component code, fulfills

(27)

where is defined in (24).
Proof: For a GLDPC ensemble, the only VNs

are the length- repetition VN, for which . Moreover,
we have , where is defined in (3) with
the assumption that each index is equal to the length
of the corresponding repetition VNs. We then obtain

and therefore which, substituted in
(26), leads to (27).

Furthermore, for LDPC codes all the CNs are SPC codes, so
that with defined in (4), with the
assumption that each index is equal to the length of
the corresponding SPC CN. For a length- SPC CN, i.e., for
a traditional degree- LDPC CN, defined in (25) is given
by . Hence, for LDPC ensembles we then obtain

and the stability bound (6) follows. Note that for
both GLDPC and LDPC ensembles the stability bound does not
depend on the VN representations as for the length- repetition
VNs, only one representation is possible.

B. Discussion

1) Dependence of the Bound on the VNs and CNs With Min-
imum Distance : The stability bound of LDPC codes over
the BEC depends solely on the variable and check component
codes with minimum distance , i.e., on the length- repetition
VNs and on the SPC CNs (of any length). This property is pre-
served when the bound is extended to the more general class of
D-GLDPC codes. In fact, the polynomial defined in (22)
only depends on the VN types, while the constant

defined in (24) only depends on the CN types.

Note that these VNs and CNs are the weakest nodes in the
Tanner graph from an erasure recovery capability viewpoint.
Furthermore, note that the bound (26) is obtained by developing
(20) within the framework of D-GLDPC codes, and then by
analyzing the EXIT chart for values of close to zero. Since
represents the erasure probability of the extrinsic channel, we
can interpret (26) as an upper bound on the iterative decoding
threshold obtained assuming the residual fraction of erasure
messages is close to zero. This fact suggests that, when the iter-
ative decoder is about to (asymptotically) succeed, the residual
erasure messages are associated with the weakest nodes, i.e.,
the VNs and CNs.

2) Dependence of the Bound on the Generalized VN Repre-
sentations: It follows from (22) that , and then the bound
(26), depends on the input–output weight spectrum of the vari-
able component codes with minimum distance . More pre-
cisely, depends on the coefficients with ,
and therefore it depends on the generator matrix chosen for each

(through the single enumerator ). On the other
hand, the parameter only depends on the distance spectrum
of the check component codes with minimum distance so that
it is independent of the specific generator matrix chosen for each

. This is coherent with the fact that the EXIT function of
a generalized VN depends on its representation while the EXIT
function of a generalized CN does not depend on its representa-
tion, as pointed out in Section II-E.

We observe that for each , at the polynomial
specified in (23) does not depend on the representation

chosen for the type- VNs. In fact, at we have

where , the number of Hamming weight– codewords of a
type- VN, is independent of its representation.

We note that the bound (26) is useful when
(i.e., the BEC capacity) and useless when

, where is the design rate given by (5) that is independent
of the VNs representation. As a particular case, if the smallest
minimum distance among either the variable component code
types or the check component code types is at least , (26) be-
comes useless.

For a given value of and a given design rate , consider two
instances of , namely, and , corresponding
to different representations of the generalized VNs. Let us as-
sume for all . Furthermore, let us
assume that (26) is useful for both and , which
implies that and (this
is depicted in Fig. 3). By (26) we must have :
Therefore, allows a potentially larger threshold than

. In general, for a given set of CN types, a given distri-
bution , and a given design rate , assuming the condition

is fulfilled (useful bound), from a stability
bound viewpoint polynomials as small as possible in the
interval are preferable. In terms of generalized VNs repre-
sentation, provided the overall fulfills ,
representations of -VNs associated with a smaller
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Fig. 3. Comparison between two different polynomials � ���, denoted by � ��� (solid curve) and � ��� (dotted curve). For the same value of � such that
� ����� � ��� and � ����� � ��� , if � ��� � � ��� for � � � � �, then � ��� allows an upper bound on the threshold � closer to ���.

for are preferable from a stability bound
viewpoint. In general, a small for is obtained
for generator matrices for which Hamming weight– codewords
are obtained from high Hamming weight information words.

3) Closed-Form Bounds: The polynomial may be of
any order so that it is not possible to obtain a general closed-
form expression for the RHS of (26). It is however possible to
develop weaker bounds admitting a closed form by noting that,
since for any each term of is positive, we may
remove any term from and obtain a lower bound on .
Next, for any , we remove all terms from except
the lowest degree terms.

For each , let us define

and

Since all terms of are positive, we have
for all and any . Then for a given D-GLDPC ensemble,
we have , so that we obtain the weaker
bound

(28)

where denotes the inverse function of . For
, (28) assumes the form

where

For it is readily shown that (28) specializes to

where

There are also special cases in which the RHS of (26) ad-
mits a closed form. For instance, this is possible when the only

variable component codes are length- repetition
codes and length- SPC codes in systematic form. Let be the
fraction of edges connected to the length- repetition VNs and

the fraction of edges connected to the length- SPC VNs (so
is the total fraction of edges connected to VNs).

Specializing the expression of given in (23) for an SPC
VN represented in systematic form (more details are provided
in Section IV-B) we have in this case

By solving for positive the equation , we obtain

(29)

We plot (29) in Fig. 4, assuming and SPC
VNs of length , for (dashed curve, corresponding
to the presence of only length- repetition VNs) and for

(solid curves). Note that the curve associated
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Fig. 4. Plot of � � � � for a D-GLDPC ensemble where the only � � � VNs are length-� repetition VNs and length-�� SPC VNs. The total fraction of
edges connected to � � � VNs is � � � � ��	�
, where � is the fraction of edges connected to the length-� repetition VNs and � is the fraction of edges
connected to the length-�� SPC VNs. The dashed line corresponds to � � �, i.e., to the presence of length-� repetition VNs only. The solid curves correspond
to the systematic representation of the SPC VNs (for � � ���� ��������	�
) while the dotted curves correspond to the cyclic representation of the SPC VNs (for
� � ������������	�
). For both representations, � � ��	�
 corresponds to the presence of SPC VNs only.

with corresponds to the presence of only length-
SPC VNs in systematic form.

4) Derivative Matching Condition: For a D-GLDPC
ensemble satisfying the derivative matching condition, the
iterative decoding threshold over the BEC assumes the form

(30)

In this subsection, we highlight how in some cases (30) cannot
be achieved within the framework of GLDPC codes while, on
the other hand, it is in principle possible to satisfy (30) by prop-
erly generalizing the VN set.

We observe that any length- and Hamming weight– binary
sequence is a codeword for a length- SPC CN. Thus, for any
length- CN with minimum distance , given in (25) fulfills

with equality if and only if the CN is a length- SPC code. We
also note that any generalized CN with minimum distance larger
than does not contribute to the constant defined in (24). We
may formalize this as follows.

Fact 1 (Parameter Loss): The generalized CNs introduce
a loss in terms of the parameter with respect to an LDPC
ensemble characterized by the same CN degrees and .

Next, we observe that the overall design rate of a D-GLDPC
ensemble, given by (5), is monotonically increasing with respect
to any , for both and , and that a generalized
CN of length has a code rate smaller than that of a length-
SPC CN. Hence, we have the following.

Fact 2 (Rate Loss): The generalized CNs introduce a loss in
terms of the ensemble design rate with respect to the design
rate of an LDPC ensemble characterized by the same CN de-
grees and .1

Given an LDPC code ensemble with some , some , and
achieving (30) for some , the replacement of a fraction of
length- SPC CNs with length- generalized CNs leads to
lower values of both and , which are denoted next by and

. Note that the reduction of induces a derivative mismatch
at (equivalently, at ) between the VN set EXIT
function and the inverse CN set EXIT function, so that (30) is no
longer fulfilled. In fact, as stated by Lemma 3 in Appendix I, we
have which, reformulated in terms
of , can be written as

showing that a loss in terms of induces an increase in the
derivative of the inverse CN set EXIT function at .

Assume we wish to modify , within the framework of
GLDPC codes, to increase the design rate from back to
and to have (30) fulfilled again for the same . A necessary
(in general, not sufficient) modification to the VN set consists
of increasing the fraction of edges connected to length- repe-
tition VNs, namely, . In fact, for GLDPC ensembles (30)
assumes the form

(31)

1This rate loss was already observed in [8].
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so that increasing is mandatory to compensate for a loss
in terms of , assuming is constant. Moreover, length- rep-
etition VNs are generally the highest rate VNs in GLDPC en-
sembles of interest, so that they provide the best compensation
for the rate loss. Suppose, however, that the value fulfills

, where is the design rate to be achieved.
From (31) we obtain

as over the BEC we must have . Hence, the deriva-
tive matching condition cannot be achieved by any GLDPC en-
semble with design rate and .

Suppose now we wish to solve the same problem within the
framework of D-GLDPC codes. Let be the fraction of edges
connected to the length- repetition VNs in the initial ensemble,
and denote by the polynomial of the final VN set.
In order to achieve (30) for the same and compensate for the
rate loss, it is necessary to design the VN set so that

(32)

and so that the final rate is . Note that, as opposed to the
GLDPC case, increasing the fraction of edges connected to the
length- repetition VNs is not a mandatory way to satisfy (32)
within the framework of D-GLDPC codes. To better clarify this
point, suppose for instance that for some we have

. It is readily shown that under this condition
specified in (23) fulfills for all , so

that for all . This simple example illus-
trates how certain classes of generalized VNs have
the capability to flatten the function with respect to the
linear behavior obtained with GLDPC codes. An example of this
phenomenon can be observed in Fig. 4, where the
VNs are a mixture of length- repetition VNs and length-15 SPC
VNs. In principle, a sublinear allows (32) to be satisfied
even in the presence of values of for which ,
i.e., for which the derivative mismatch cannot be compensated
with GLDPC codes. Also note that introducing generalized VNs
of rate is beneficial in terms of compensation for the
rate loss . Under this perspective, generalized
VNs with code rate larger than are an appealing option to
compensate for both the parameter loss and the rate loss due
to the use of generalized CNs. A subclass of such VNs is con-
sidered in the next section.

IV. D-GLDPC CODES WITH SPC VARIABLE NODES

A. Motivation

GLDPC codes employing generalized CNs such as Hamming
or BCH CNs are known to represent a possible solution for ob-
taining a good compromise between waterfall performance and
error floor. Examples of such GLDPC code constructions are
described in [4], [5], [7], [9], [10]. In general, increasing the
fraction of edges connected to the generalized CNs may be fa-
vorable from the viewpoint of the overall code minimum dis-
tance and then of the error floor, but presents drawbacks within
the framework of GLDPC codes, as highlighted next.

Note that, as the loss in terms of the parameter claimed
in Fact 1 is associated with an increase of the derivative of
the inverse CN set EXIT function at , it tends to in-
duce an area gap between the EXIT curves for values of
close to .2 This phenomenon is even more pronounced when
generalized CNs with are introduced. In fact, the
EXIT function over the BEC of any such CN is characterized
by (see the Proof of Lemma 3 in Ap-
pendix II). Then, its inverse EXIT function presents a derivative
diverging to as . The inverse EXIT function of
any generalized CNs with has a typical shape. An ex-
ample is presented in Fig. 5, where the inverse EXIT function
of a BCH CN is depicted (dot-dashed curve).

As explained in the previous section, the only possible way
to reduce the area gap between the EXIT curves introduced by
the generalized CNs, while compensating for the rate loss, con-
sists of using sufficiently large fractions of edges connected to
length- repetition VNs. Indeed, this is the reason for which
numerical tools for threshold optimization of GLDPC code en-
sembles such as differential evolution (DE) [24], [25] typically
return distributions with large fractions of edges connected to
the length- repetition VNs when large fractions of edges con-
nected to the generalized CNs are imposed, especially if these
CNs are characterized by and if the target code rate is
not too small (for instance, a design rate is considered
in a numerical example presented in Section IV-D).

The EXIT function of a length- repetition VN is given by
which is linear with respect to

. When a GLDPC ensemble presents a large fraction of edges
connected to generalized CNs with and a large frac-
tion of edges connected to length- repetition VNs, the shape
of the overall inverse CN set EXIT function (17), and that of
the overall VN set EXIT function (16) are heavily influenced
by these CNs and VNs, respectively. The corresponding EXIT
curves present quite a different shape and usually do not allow to
obtain a satisfying curve matching. Consequently, the threshold
values achieved by such GLDPC code ensembles are usually
quite poor. Several examples of such poor thresholds can be
found in [8, Table II] for GLDPC codes where all the CNs have
minimum distance at least .

Allowing the use of generalized VNs provides an increased
flexibility in the variable component codes selection that may
be exploited to overcome these issues. In this context, an in-
teresting class of generalized VNs is represented by
SPC VNs, each one having edges towards the CN set and as-
sociated with encoded bits. SPC VNs exhibit three ap-
pealing features. First, as for a given and they are
the VNs with the highest code rate , they are able
to provide an excellent compensation for the rate loss claimed
in Fact 2. Second, they have minimum distance . This feature
makes them candidates to compensate for the area gap. Finally,
they are as easy to decode as repetition codes.

We focus next on D-GLDPC codes employing SPC VNs.
Through a numerical case study which uses the DE algorithm
to optimize the degree profile of D-GLDPC ensemble under a

2See [21] for the implications of the area gap on the threshold. In general, the
larger this area gap, the weaker the threshold becomes.
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Fig. 5. Inverse EXIT function over the BEC of a ���� ��� BCH CN (dot-dashed curve) and EXIT functions over the BEC of a ���� ��� SPC VN represented in
systematic form (solid curve) and in cyclic form (dotted curve) for a channel erasure probability � � 	��
�.

given set of constraints, the effect of the SPC VNs is investigated
from both an EXIT chart viewpoint and from a stability bound
viewpoint. We consider two possible representations of the SPC
CNs, namely, the systematic and the cyclic representations.

B. SPC Variable Nodes in Systematic Form

Let us suppose that the VNs of type- are length- SPC codes
in systematic form, i.e., represented by the gen-
erator matrix

...
...

. . .
...

...

Each of these VNs has weight- codewords. Specifically,
there are weight- codewords generated by weight-
information words, and weight-
codewords generated by weight- information words. No other
weight- codewords are generated by information words of
weight larger than . Then

if
if
if

so that given in (23) becomes

(33)

C. SPC Variable Nodes in Cyclic Form

Let the VNs of type- be SPC codes in cyclic
form, i.e., generated by

...
...

. . .
...

...

In this case, we obtain an expression of different from
(33). In fact, it is readily shown that in an SPC code represented
in cyclic form, an information word of weight generates a
weight- codeword if and only if all its “ ” positions are con-
tiguous. Then, for all we have ,
from which given in (23) becomes

(34)

If or , then (33) coincides with (34) as expected.
Specifically, from both (33) and (34) we obtain and

for and , respectively.
For , let us denote by and by the poly-

nomial of a length- SPC VN in systematic and cyclic
form, respectively. We show next that if

if

if

if
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TABLE I
OPTIMUM D-GLDPC ENSEMBLES RETURNED BY THE DIFFERENTIAL EVOLUTION ALGORITHM

We have

(35)

Since

we have , a result already highlighted in the
previous section. For we have

which leads to ; analogously, for
we have

which leads to . This result for
indicates that the cyclic representation has a better potential than
the systematic representation to provide a higher threshold
(see Fig. 3).

D. Distribution Optimization Example

Let be a function returning the
threshold for the D-GLDPC ensemble characterized by VN
type set , CN type set , and variable and check node
degree distributions and , respectively. We pose the
optimization problem as follows.

• Given that both communication channel and the extrinsic
channel are a BEC

• Maximize with respect to and

• Subject to and .
Here, is the design code rate expressed by (5) and is a set
of possible additional constraints. The ensemble optimization is
performed using the DE algorithm.

We consider the optimization of D-GLDPC ensembles with
design rate . We let the set include repetition VNs
with degree ranging between and and length- SPC VNs
either in cyclic or systematic form. Furthermore, we let the set

include SPC CNs with degree ranging between and and
BCH CNs (having minimum distance ). First we as-

sume is the empty set. Let us consider the two columns of
Table I labeled as “D-GLDPC ” and “D-GLDPC ” which
correspond to the optimization of the D-GLDPC ensembles em-
ploying the SPC VNs in systematic and in cyclic form, respec-
tively. We observe that in the first case, the optimal distribution
returned by DE is a GLDPC distribution, i.e., there is a zero
fraction of edges connected to the SPC VNs in systematic form.
On the contrary, in the second case we obtain a D-GLDPC en-
semble where the fraction of edges connected to the
VNs is partitioned almost equally between the length- repe-
tition VNs and the SPC VNs. This ensemble exhibits the best
threshold among the obtained distributions. Both distributions
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exhibit an excellent derivative matching as is very close to
.

Let us now consider the two columns of Table I labeled as
“D-GLDPC ” and “D-GLDPC ,” corresponding to the op-
timization of the D-GLDPC ensembles employing the SPC VNs
in systematic and in cyclic form, respectively, subject to the fur-
ther constraint ( in the optimization problem formalization)
that the fraction of edges connected to the BCH CNs is at least

. Such a constraint is usually intended to lower the error
floor. In this case, we also observe that the optimal distribution
where SPC VNs in systematic form are allowed in is ac-
tually a GLDPC distribution. This distribution is characterized
by a large threshold loss compared with that of the D-GLDPC

distribution (that is compared with the optimal distribution
when removing the additional constraint ). On the other hand,
the D-GLDPC distribution makes heavy use of SPC VNs in
cyclic form and, despite the large fraction of edges connected to
the BCH CNs, the overall threshold loss is much smaller com-
pared with that observed when allowing SPC VNs is systematic
form. Again both distributions exhibit an excellent derivative
matching.

E. Discussion

1) Dependence of the Optimal Distribution on the Gener-
alized VNs Representation: From Table I, for the same set of
variable component codes and the same set of optimization con-
straints, we notice a pronounced dependence on the representa-
tion of the generalized VNs for both the optimal degree profile
and the optimal threshold. In the case where is assumed to
be the empty set as well as in the case where a lower bound is
imposed on the fraction of edges connected to the generalized
CNs, DE converges to a GLDPC distribution if the systematic
form of the SPC VNs is adopted. DE converges to a different dis-
tribution, namely, a D-GLDPC distribution, if the cyclic form is
adopted.

To further elaborate this point, we depict in Fig. 5 the EXIT
functions over the BEC of a SPC VN represented in
systematic form (solid curve) and in cyclic form (dotted curve),
assuming a BEC erasure probability (a value close
to the thresholds of the D-GLDPC and D-GLDPC dis-
tributions). We notice how different representations of the same
VN may be associated with EXIT functions with quite a dif-
ferent behavior. In particular, we observe that the EXIT func-
tion associated with the systematic form is flat for sufficiently
small values of . This feature makes it problematic to obtain
a good curve fitting in the EXIT chart, at small values of ,
exploiting the SPC VNs in systematic form. Coherently, DE re-
turns a zero fraction of edges connected to these VNs, only ex-
ploiting length- repetition codes as minimum distance VNs.
On the other hand, the same feature is not shared by the EXIT
function of the cyclic representation. The SPC VNs in cyclic
form are effectively combined by DE with the other VNs to re-
duce the area gap between the curves.

2) Robustness to Generalized CNs: The distributions
D-GLDPC and D-GLDPC in Table I may be also inter-
preted as the optimal GLDPC distributions with design rate

returned by DE for the same sets and , and

for including no generalized VN types. Therefore, a com-
parison of the D-GLDPC and D-GLDPC distributions
allows us to discuss the role played by the SPC VNs is cyclic
form, in the presence of a large fraction of edges connected to
the BCH CNs.

As expected, the optimal GLDPC distribution is character-
ized by a large fraction of length– repetition VNs. In this spe-
cific example, in the optimal distribution returned by DE, all
the VNs are repetition- codes. They provide the necessary rate
compensation to obtain an overall rate and allow a very
good derivative matching at to be achieved (as the sta-
bility bound is close to the threshold). On the other hand, the op-
timal D-GLDPC ensemble with SPC VNs in cyclic form makes
a moderate use of the length– repetition VNs as most of the
rate compensation is performed by the high rate
SPC VNs. This fact is very beneficial as the rate compensation
is achieved with a smaller fraction of edges connected to the
VNs with minimum distance ( versus ), allowing
DE to exploit also low-rate VN types for the purpose of curve
fitting, specifically the repetition VNs of length and .

In Figs. 6 and 7, we illustrate the EXIT charts of the
D-GLDPC and D-GLDPC distributions, respectively,
at . In the first case, all the VNs are length repetition
codes, so that the VN set EXIT function is linear in . The
optimal distribution returned by DE achieves a good derivative
matching a , but is affected by a large unfilled gap
between the EXIT curves at lower values of . Consequently,
its threshold is quite poor. In the second case, we observe
a much better curve fitting obtained by combining high rate

VNs, helpful in filling the area gap at values of
close to , and very low rate VNs, helpful in tightly fitting the
inverse CN set EXIT curve at smaller values of . Overall,
the D-GLDPC code ensemble exhibits a robustness to the
introduction of a large fraction of edges connected to the BCH
CNs as the threshold loss with respect to the unconstrained
optimal distribution is much smaller than in the GLDPC case.

3) SPC VNs and Stability Bound: Let us consider again
Fig. 4. Since for the D-GLDPC distribution, the total frac-
tion of edges connected to the VNs with minimum distance
is about and the fraction of edges connected to the SPC
VNs is about , the dotted curve associated with
represents the function for the D-GLDPC distribu-
tion. This curve allows us to appreciate the useful role played
by the SPC VNs to compensate for the loss in the parameter
discussed in Section III-B. The D-GLDPC distribution is
characterized by . In that case a large fraction of
edges ( ) are connected to SPC CNs contributing to .
On the other hand, the D-GLDPC distribution is character-
ized by , i.e., by quite a smaller value of . This
is due to the imposition of a large fraction of edges connected to
the BCH CNs that do not contribute to since their minimum
distance is larger than 2. We observe that for
and we have , implying that such
a value of is not compatible with the derivative matching
condition in the context of GLDPC codes. However, when
passing from the D-GLDPC distribution to the D-GLDPC

distribution, we observe a significant increase in the fraction
of edges connected to the SPC VNs. The effect is to obtain a
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Fig. 6. EXIT chart for the D-GLDPC � distribution in Table I.

Fig. 7. EXIT chart for the D-GLDPC � distribution in Table I.

function achieving the stability bound with equality,
with a value of threshold still close to .

Referring to Fig. 4, we observe that the dotted curve for
takes a value very close to for

while the dashed here takes a value larger than , as
expected from this discussion. Observing the solid curve associ-
ated with , we also note that for the same variable and
check component code types and distributions and
(and then for the same ), a much smaller threshold could be

potentially achieved using the systematic representation, instead
of the cyclic one. This was expected from the discussion in Sec-
tion III-B2 and with the comparison between the two represen-
tations, in terms of , provided in Section IV-C.

V. CONCLUSION

In this paper, a stability bound over the BEC has been devel-
oped for D-GLDPC codes. It generalizes the analogous bound
valid for LDPC code ensembles. For D-GLDPC codes, as for
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LDPC codes, the only variable and check component codes con-
tributing to the bound are those having minimum distance . A
derivative matching condition sufficient to achieve the bound
with equality has also been defined. If this condition is fulfilled,
then the decoding threshold over the BEC for D-GLDPC codes
is expressed by a simple formula, although in general not in
closed form. For GLDPC codes, this formula always leads to a
closed-form threshold expression. The stability bound analysis
has suggested SPC codes used as variable nodes as an appealing
option to overcome common problems created by generalized
CNs. The effectiveness of this approach has been shown through
a numerical example.

APPENDIX I
PROOF OF THEOREM 2

Let us first focus on the derivative of the CN set EXIT func-
tion at . From (19) we have

(36)

In order to develop (36), it is necessary to explicit the deriva-
tive at of each generalized CN type EXIT function. The
following lemma shows that the RHS of (36) only depends on
the CN types with minimum distance . It relates the
RHS of (36) to the multiplicity of the codewords with Hamming
weight of such CN types.

Lemma 3: The first derivative at of the CN set
EXIT function for a D-GLDPC code ensemble over the BEC,
assuming MAP erasure correction at each check component
code, satisfies

Proof: See Appendix II.

The derivative at of the inverse CN set EXIT function
is then given by

(37)

Next, we develop the partial derivative of the VN set EXIT
function, with respect to and evaluated at . It follows
from (18) that

(38)

In order to develop the summation over the generalized VN
types in the RHS of (38), we have to explicit the partial deriva-
tive with respect to of each generalized VN type EXIT func-
tion, evaluated at . The following lemma provides a simple
expression for (38), revealing how its RHS only depends on the
VN types with minimum distance .

Lemma 4: The partial derivative with respect to and eval-
uated at , of the VN set EXIT function for a D-GLDPC
code ensemble over the BEC, assuming MAP erasure correction
at each variable component code, satisfies

(39)
Proof: See Appendix III.

Using (37) and (39) into (20) we obtain the following expres-
sion for the stability bound of D-GLDPC code ensembles over
the BEC:

(40)

The left-hand side (LHS) of (40) is a real polynomial in
the variable . This polynomial can be written as

, where , defined in (23), is a degree-
real polynomial associated with the type- VNs.
Each is a monotonically increasing function (since all its
coefficients are positive). Consequently, is a monotoni-
cally increasing function and its inverse exists. By ap-
plying to both terms of (40) we finally obtain (26).

APPENDIX II
PROOF OF LEMMA 3

Let us consider an generalized CN with EXIT function
in the form (14). Then

The generator matrix of the check component code is full rank
by definition, so . Because of Proposition 3 in Ap-
pendix IV, removing any single column from a linear block
code generator matrix does not reduce its rank if and only if

, in which case we obtain , so that
. As noted in Section I, the hy-

pothesis is always assumed in this paper. Then, we
can assume .

If for the CN we obtain

with . By
applying Proposition 3, we obtain

if (41)

and

if (42)

In fact, if the CN exhibits a minimum distance , then
removing any pair of columns from the generator matrix does
not affect the rank. In this case ,
hence .

According to these results, the only generalized CNs that con-
tribute to the summation in the RHS of (36) are those charac-
terized by . By recalling that all the SPC codes have
minimum distance , we conclude that (36) only depends on the
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check component codes with . Therefore, the deriva-
tive at of the CN set EXIT function can be then ex-
pressed as

(43)

where

(44)

and where the superscript in both and is used
to define the dependence of these parameters on the CN type
explicitly. The parameter does not depend on the chosen
representation for the th generalized CN type.

Let us consider an generalized check component code
with , and let be the generic matrix
obtained by removing two columns from (any representation of)
its generator matrix. Because of Proposition 2 in Appendix IV, it
follows that removing any single column cannot reduce the rank,
and therefore the rank of is either or . Denoting
by the summation over all the possible submatrices

, we have

where each term in the summation is either equal to or to .
Denoting by the submatrix composed of the two removed
columns, by Proposition 2 in Appendix IV any such term is
equal to if and only if covers a (necessarily weight- )
codeword. Since each can cover at most one weight-
codeword, and since there are no two different covering
the same weight- codeword, we have . Therefore,
we can write (43) as

(45)

We can further simplify (45) by noting that

as for a SPC CN and . Equation
(37) follows.

APPENDIX III
PROOF OF LEMMA 4

Let us consider an generalized VN whose EXIT func-
tion is given by (11), and let us define

where is defined in (12). Then

from which we have

(46)

The expression (46) can be further simplified by invoking
Proposition 3 in Appendix IV. Since any variable component
code has minimum distance by hypothesis, removing
any single column from the generator matrix of the variable
component code cannot reduce the rank of . It follows that

thus leading to

Proposition 3 in Appendix IV can be invoked again in order to
show that

if (47)

and

if

(48)

where is the variable component code minimum distance.
In fact, under the hypothesis , removing any single
column or any pair of columns from (any representation of)
cannot reduce its rank. Under this hypothesis
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Hence, the only generalized variable component codes con-
tributing to the RHS of (38) are those with minimum distance

. Introducing and (48) in (46), and then using
(46) in (38), we can write this latter equation as

(49)

where

(50)

and where the superscript to both and
is used to define the dependence on the VN type explicitly. As
opposed to in (44), in (50) depends on the
component code representation.

Next we claim the for an generalized variable compo-
nent code with we have

(51)

Equation (51) is proved at the end of this appendix. It allows us
to write

(52)
This expression can be further simplified by noting that the only
weight- codeword of a length- repetition VN is ,
which is generated by a weight- information word. Then, for a
length- repetition VN we have

Hence, (52) can be put into the more compact form (39).

Proof of (51): Let be a variable com-
ponent code and let be the chosen generator matrix for . We
denote by the subset of composed of the weight- code-
words . Furthermore, we denote by the
linear block code generated by the concatenated matrix .
The generic codeword of is denoted by , while the generic
codeword of by . We have , where and
must satisfy . The code then depends on the chosen
generator matrix representation for . It is readily shown that

, where and are the minimum dis-
tances of and , respectively.

Let be a generic matrix
obtained by selecting columns in and columns
in . Let be a generic matrix obtained
by selecting columns in and be a generic

matrix obtained by selecting columns in (we
also use the notation ). Let be
the submatrix of composed of the two unselected columns,
and the submatrix composed of the two unselected
columns of and of the unselected columns of . Moreover,
let be a generic such that covers a weight-
codeword of . There is a one-to-one correspondence between
weight- codewords and matrices , so that we can
denote by the matrix such that is covered by
the two removed columns.

Let us apply Proposition 2 in Appendix IV to the code .
Each codeword is composed of the concatenation of
a codeword with one of the possible sequences of
bits (where by the linearity of the all-zero length- sequence
is always concatenated with the all-zero codeword of ). Com-
bining this observation with Proposition 2 in Appendix IV we
observe that a necessary (though not sufficient) condition for
having is that covers a weight-
codeword of . In fact, if no weight- codeword of is cov-
ered by , by Proposition 2 we have , and
hence , regardless of the value assumed by

. Then, we can write as

(53)

In the previous equation list: is the definition of ;
follows from the number of choices of

and from the definition of ; follows from
; follows from Proposition 2

applied to . Using (53) we have

(54)
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where the last equality follows from a change in the order of
summations.

By hypothesis there are no VNs with minimum distance .
Then, for a given weight- codeword , any submatrix

is such that can cover at most one code-
word of , i.e., the codeword subject to . If
we denote by the Hamming weight of , for each
weight- codeword the summation over in (54) can
always start from . In fact, for
it is not possible for to cover the codeword ,
hence, due to Proposition 2 in Ap-
pendix IV. That allows writing the RHS of (54) as

(55)

For a given , the codeword is covered by
exactly matrices . In fact, out of the

columns of corresponding to , columns
must be kept in fixed positions (to cover ), while the remaining

columns can be chosen out of the avail-
able positions. Hence, by Proposition 2 in Appendix IV, there
are exactly non-null terms in

Deleting from two columns corresponding to a weight-
codeword of reduces the rank of this matrix by one, leading
to a rank . In fact, considering the VN minimum distance

, removing the first column cannot reduce the rank
(see Proposition 3 in Appendix IV) and removing the second
column reduces the rank (see Proposition 2 in Appendix IV)
necessarily by one. We can then conclude that each of the

non-null terms in the summation

is equal to one, independently of . Then we can further develop
(55) as

(56)

Next we observe that those weight- codewords associated
with the same (i.e., generated by information words
having the same weight) produce the same contribution in (56),
since only the Hamming weight of the information words
matters. This observation allows us to write (56) as

(57)

where is the number of weight- codewords such that
. In general, depends on the variable compo-

nent code representation. By noting that

we finally obtain (51).

APPENDIX IV
REDUCING A GENERATOR MATRIX RANK BY COLUMN

ELIMINATION

For a given linear block code and for a given repre-
sentation of its generator matrix, we denote by a generic
submatrix obtained by selecting columns out of , and by
the submatrix composed of the unselected columns.

Definition 6: We say that covers a non-null codeword
when there are no “ ” positions of corresponding to columns

belonging to .

Example 1: Let us consider a simplex code with gen-
erator matrix

and let us denote by the submatrix composed of the last two
columns of . Then, the only non-null codeword covered by
is .

The following result states that in order to reduce the rank of
a given generator matrix by column elimination, it is necessary
and sufficient that the removed pattern of columns covers at least
one non-null codeword.

Proposition 2: For any generator matrix representation of an
linear block code if and only if covers

at least one non-null codeword.
Proof:

[Sufficiency] Suppose that covers a nonzero codeword ,
and consider a representation of the generator matrix where

is one of the rows. It follows that removing from the
columns associated with reduces the rank because at least
one of the rows becomes an all-zero row, so that .
Since any representation of the generator matrix can be obtained
from any other representation by row additions only, and since
row additions cannot modify the rank of submatrices composed
of generator matrix columns, we have also for
any representation other than .

[Necessity] Conversely, let us suppose that for
a given generator matrix representation. Using the same argu-
ment as for the sufficiency, we observe that this inequality must
be satisfied also for any other representation of the generator
matrix. As removing from any generator matrix leads to a

matrix with reduced rank, it must be possible to obtain
(from any generator matrix representation) a generator matrix
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where one or more rows have only “ ” in those positions cor-
responding to . All these rows correspond to non-null code-
words of covered by .

The following result represents a particular case of Proposi-
tion 2.

Proposition 3: We have for all if and only
if .

Proof:
[Sufficiency] Let us suppose that for all . By

applying Proposition 2 it follows that no submatrix (com-
posed of columns) can cover any codeword. Then

.
[Necessity] Conversely, let us suppose that .

Then, no submatrix (composed of columns) can cover
any codeword. By applying Proposition 2 we conclude that

for all .

Example 2: All the codewords of the simplex code of
Example 1 have Hamming weight . As one of these codewords
is , Proposition 2 guarantees that if we remove
the first three and the last column from given in Example 1
(or from any generator matrix obtained performing row summa-
tions on ) we obtain a matrix with rank smaller than

. On the other hand, by Proposition 3 we know that, even if we
remove any set of three or less columns, the rank of remains
unchanged.

In [14], the concept of independent set was introduced. Given
a rank- binary matrix, an independent set of size
is defined as any set of columns such that removing these
columns from the matrix leads to a matrix with
a rank smaller than . By Proposition 2 we now state that a
necessary and sufficient condition for a set of columns to be
an independent set of a generator matrix is that the
columns cover at least one codeword. Moreover, by Proposition
3 we recognize that any set of columns cannot form
an independent set for the generator matrix.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their
valuable comments and the Associate Editor for very efficient
handling of the review process.

REFERENCES

[1] R. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[2] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. IT-27, no. 5, pp. 533–547, Sep. 1981.

[3] Y. Wang and M. Fossorier, “Doubly generalized low-density
parity-check codes,” in Proc. 2006 IEEE Int. Symp. Information
Theory, Seattle, WA, Jul. 2006, pp. 669–673.

[4] J. Boutros, O. Pothier, and G. Zémor, “Generalized low density
(Tanner) codes,” in Proc. 1999 IEEE Int. Conf. Communications,
Vancouver, BC, Canada, Jun. 1999, vol. 1, pp. 441–445.

[5] M. Lentmaier and K. Zhigangirov, “On generalized low-density parity-
check codes based on Hamming component codes,” IEEE Commun.
Lett., vol. 3, no. 8, pp. 248–250, Aug. 1999.

[6] J. P. Tillich, “The average weight distribution of Tanner code ensem-
bles and a way to modify them to improve their weight distribution,” in
Proc. 2004 IEEE Int. Symp. Information Theory, Chicago, IL, Jun./Jul.
2004.

[7] G. Yue, L. Ping, and X. Wang, “Generalized low-density parity-check
codes based on Hadamard constraints,” IEEE Trans. Inf. Theory, vol.
53, no. 3, pp. 1058–1079, Mar. 2007.

[8] N. Miladinovic and M. Fossorier, “Generalized LDPC codes and
generalized stopping sets,” IEEE Trans. Commun., vol. 56, no. 2, pp.
201–212, Feb. 2008.

[9] J. Chen and R. Tanner, “A hybrid coding scheme for the Gilbert-Elliott
channel,” IEEE Trans. Commun., vol. 54, no. 10, pp. 1787–1796, Oct.
2006.

[10] G. Liva, W. Ryan, and M. Chiani, “Quasi-cyclic generalized LDPC
codes with low error floors,” IEEE Trans. Commun., vol. 56, no. 1, pp.
49–57, Jan. 2008.

[11] E. Paolini, M. Chiani, and M. Fossorier, “On the growth rate of irregular
GLDPC codes weight distribution,” in Proc. 2008 Int. Symp. Spread
Spectrum Techniques and Applications, Bologna, Italy, Aug. 2008, pp.
790–794.

[12] E. Paolini, “Iterative Decoding Methods Based on Low-Density
Graphs,” Ph.D. dissertation, Univ. Bologna, Bologna, Italy, May 2007.

[13] Y. Wang and M. Fossorier, “EXIT chart analysis for doubly generalized
LDPC codes,” in Proc. 2006 IEEE Global Telecommunications Conf. ,
San Francisco, CA, Nov. 2006, pp. 1–6.

[14] E. Paolini, M. Fossorier, and M. Chiani, “Generalized and doubly-gen-
eralized LDPC codes with random component codes for the binary era-
sure channel,” IEEE Trans. Inf. Theory, submitted for publication.

[15] Y. Wang and M. Fossorier, “Doubly generalized LDPC codes over the
AWGN channel,” IEEE Trans. Commun., to be published.

[16] S. ten Brink, “Convergence behavior of iteratively decoded parallel
concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp.
1727–1737, Oct. 2001.

[17] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Effi-
cient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 569–584, Feb. 2001.

[18] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans.
Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[19] T. Richardson and R. Urbanke, “Modern Coding Theory,” 2007 [On-
line]. Available: http://lthcwww.epfl.ch/mct/index.php, preprint

[20] C. Di, R. Urbanke, and T. Richardson, “Weight distribution of low-
density parity-check codes,” IEEE Trans. Inf. Theory, vol. 52, no. 11,
pp. 4839–4855, Nov. 2006.

[21] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information
transfer functions: Model and erasure channel properties,” IEEE Trans.
Inf. Theory, vol. 50, no. 11, pp. 2657–2673, Nov. 2004.

[22] T. Helleseth, T. Kløve, and V. I. Levenshtein, “On the information
function of an error-correcting code,” IEEE Trans. Inf. Theory, vol. 43,
no. 2, pp. 549–557, Mar. 1997.

[23] M. Shokrollahi, Capacity-Achieving Sequences. Minneapolis, MN:
Inst. Mathematics and its Applications (IMA), 2000, vol. 123, IMA
Volumes in Mathematics and its Applications, pp. 153–166.

[24] K. Price and R. Storn, “Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimiz., vol. 11, pp. 341–359, 1997.

[25] M. A. Shokrollahi and R. Storn, “Design of efficient erasure codes with
differential evolution,” in Proc. 2000 IEEE Int. Symp. on Information
Theory, Sorrento, Italy, Jun. 2000, p. 5.

Enrico Paolini (S’03–M’07) received the Dr. Ing. degree (with honors) in
telecommunications engineering and the Ph.D. degree in telecommunications
engineering from the University of Bologna, Bologna, Italy, in 2003 and 2007,
respectively.

During his Ph.D. studies he was a Visiting Research Scholar at the Univer-
sity of Hawaii at Manoa. Currently, he holds a postdoctoral position at the De-
partment of Electronics, Computer Science and Systems (DEIS) of the Uni-
versity of Bologna. His research interests include error-control coding (with
emphasis on LDPC codes and their generalizations, iterative decoding algo-
rithms, reduced-complexity maximum-likelihood decoding for erasure chan-
nels), and distributed radar systems based on ultrawideband. In the field of
error-correcting codes, has been involved since 2004 in activities with the Eu-
ropean Space Agency (ESA).

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on July 21, 2009 at 11:35 from IEEE Xplore.  Restrictions apply. 



1046 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 3, MARCH 2009

Dr. Paolini is a member of the IEEE Communications Society and of the IEEE
Information Theory Society.

Marc P. C. Fossorier (S’89–M’90–SM’00–F’06) received the B.E. degree
from the National Institute of Applied Sciences (INSA.), Lyon, France, in 1987
and the M.S. and Ph.D. degrees in 1991 and 1994, respectively, all in electrical
engineering.

His research interests include decoding techniques for linear codes,
communication algorithms, and statistics. He is a recipient of a 1998 NSF
Career Development Award. He has served as Associate Editor for the IEEE
TRANSACTIONS ON INFORMATION THEORY from 2003 to 2006, as Editor for the
IEEE COMMUNICATIONS LETTERS from 1999 to 2008, as Editor for the IEEE
TRANSACTIONS ON COMMUNICATIONS from 1996 to 2003, and as Treasurer of
the IEEE Information Theory Society from 1999 to 2003. From 2002 to 2008,
he was also an Elected Member of the Board of Governors of the IEEE Infor-
mation Theory Society which he served as Second Vice-President and First
Vice-President. He was Co-Chairman of the 2007 International Symposium on
Information Theory (ISIT), Program Co-Chairman for the 2000 International
Symposium on Information Theory and Its Applications (ISITA), and Editor
for the Proceedings of the 2006, 2003, and 1999 Symposia on Applied Algebra,
Algebraic Algorithms, and Error Correcting Codes (AAECC).

Marco Chiani (M’94–SM’02) was born in Rimini, Italy, in April 1964. He
received the Dr. Ing. degree (magna cum laude) in electronic engineering and the
Ph.D. degree in electronic and computer science from the University of Bologna,
Bologna, Italy, in 1989 and 1993, respectively.

He is a Full Professor at the II Engineering Faculty, University of Bologna,
where he is the Chair in Telecommunication. During the summer of 2001 he
was a Visiting Scientist at AT&T Research Laboratories in Middletown, NJ. He
is a frequent visitor at the Massachusetts Institute of Technology (MIT), where
he presently holds a Research Affiliate appointment. His research interests in-
clude wireless communication systems, MIMO systems, wireless multimedia,
low-density parity-check codes (LDPCC) and UWB. He is leading the research
unit of CNIT/University of Bologna on Joint Source and Channel Coding for
wireless video and is a consultant to the European Space Agency (ESA-ESOC)
for the design and evaluation of error correcting codes based on LDPCC for
space CCSDS applications.

Prof. Chiani has chaired, organized sessions, and served on the Technical Pro-
gram Committees at several IEEE International Conferences. In January 2006,
he received the ICNEWS award “For Fundamental Contributions to the Theory
and Practice of Wireless Communications.” He was the recipient of the 2008
IEEE ComSoc Radio Communications Committee Outstanding Service Award.
He is the Past Chair (2002–2004) of the Radio Communications Committee of
the IEEE Communication Society and past Editor of Wireless Communication
(2000–2007) for the IEEE TRANSACTIONS ON COMMUNICATIONS.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on July 21, 2009 at 11:35 from IEEE Xplore.  Restrictions apply. 


